Exercise 305

According to the World Bank, at the end of $2013(t=0)$ the U.S. population was 316 million and was increasing according to the following model: $P(t)=316 e^{0.0074 t}$, where P is measured in millions of people and t is measured in years after 2013.
a. Based on this model, what will be the population of the United States in 2020 ?
b. Determine when the U.S. population will be twice what it is in 2013 .

Solution

Part (a)

2020 is 7 years after 2013, so plug in $t=7$ to the equation.

$$
P(7)=316 e^{0.0074(7)} \approx 332.80
$$

According to the model, the population will be about 333 million in 2020.

Part (b)

Double the population of 316 million is 632 million.

$$
\begin{aligned}
P(t) & =316 e^{0.0074 t} \\
632 & =316 e^{0.0074 t}
\end{aligned}
$$

Divide both sides by 316 .

$$
2=e^{0.0074 t}
$$

Take the natural logarithm of both sides.

$$
\ln 2=\ln e^{0.0074 t}
$$

Use the property of logarithms that allows the exponent of the argument to be brought down in front.

$$
\ln 2=(0.0074 t) \ln e
$$

Use the fact that $\ln e=1$.

$$
\ln 2=0.0074 t
$$

Solve for t by dividing both sides by 0.0074 .

$$
t=\frac{\ln 2}{0.0074} \approx 93.67
$$

Therefore, it will take about 94 years from the end of 2013 for the population to double.

